This paper presents a novel control algorithm for optimising operational costs of a combined domestic micro-CHP (combined heat and power), battery and heat storage system. Using a minute by minute basic time-step, this work proposes a simple and computationally efficient rule based whole-system management, developed from empirical study of realistic simulated domestic electricity and heat loads. The CHP availability is considered in two binary states which, together with leveraging storage effectively, maximises CHP efficiency, and gives the algorithm increased real world feasibility. In addition, a novel application of a dual battery system is proposed to support the micro-CHP with each battery supplying just one of the distinctive morning and evening electrical load peaks, and thus inherently improving overall battery system lifetime. A case study is presented where the algorithm is shown to yield approximately 23% energy cost savings above the base case, almost 3% higher savings than that of the closest previous work, and 96.8% of the theoretical minimum cost. In general, the algorithm is shown to always yield better than 88% of the theoretical minimum cost, a ratio that will be considerably higher when real-world CHP limitations are factored into the theoretical minimum calculation.
Read full abstract