Fungi are key components of microbial communities in mangrove wetlands, with important roles in the transformation of nutrients and energy. However, existing studies typically focus on cultivable fungi and seldom on the structure and driving factors of entire fungal communities. The compositions, community assembly, and interaction patterns of mangrove fungal communities on a large scale remain elusive. Here, biogeography, assembly, and co-occurrence patterns of fungal communities in mangroves across eastern to southern China were systematically analyzed by targeting the entire internal transcribed spacer (ITS) region with high-throughput Pacific Biosciences single-molecule real-time sequencing. The analysis revealed a high level of fungal diversity, including a number of basal fungal lineages not previously reported in mangroves, such as Rozellomycota and Chytridiomycota. Beta nearest-taxon index analyses suggested a determinant role of dispersal limitation on fungal community in overall and most individual mangroves, with support from the strong distance-decay patterns of community similarity. Further, nonmetric multidimensional scaling analyses revealed similar biogeographies of dominant and rare fungal communities. A minor role of environmental selection on the fungal community was noted, with geographical location and sediment depth as crucial factors driving the distribution of both, the dominant and rare taxa. Finally, network analysis revealed high modularized co-occurrence patterns of fungal community in mangrove sediments, and the keystone taxa might play important roles in microbial interactions and ecological functions. The investigation expands our understanding of biogeography, assembly patterns, driving factors, and co-occurrence relationships of mangrove fungi and will spur the further functional exploration and protection of fungal resources in mangroves. IMPORTANCE As key components of microbial community in mangroves, fungi have important ecological functions. However, the fungal community in mangroves on a large scale is generally elusive, and mangroves are declining rapidly due to climate change and anthropogenic activities. This work provides an overview of fungal community structure and biogeography in mangrove wetlands along a >9,000-km coastline across eastern to southern China. Our study observed a high number of basal fungal lineages, such as Rozellomycota and Chytridiomycota, in mangrove sediments. In addition, our results highlight a crucial role of dispersal limitation and a minor role of environmental selections on fungal communities in mangrove sediments. These novel findings add important knowledge about the structure, assembly processes, and driving factors of fungal communities in mangrove sediments.