Present-day crocodylians exhibit a remarkably akinetic skull with a highly modified braincase. We present a comprehensive description of the neurocranial osteology of extant crocodylians, with notes on the development of individual skeletal elements and a discussion of the terminology used for this project. The quadrate is rigidly fixed by multiple contacts with most braincase elements. The parabasisphenoid is sutured to the pterygoids (palate) and the quadrate (suspensorium); as a result, the basipterygoid joint is completely immobilized. The prootic is reduced and externally concealed by the quadrate. It has a verticalized buttress that participates in the canal for the temporal vasculature. The ventrolateral processes of the otoccipitals completely cover the posteroventral region of the braincase, enclose the occipital nerves and blood vessels in narrow bony canals and also provide additional sutural contacts between the braincase elements and further consolidate the posterior portion of the crocodylian skull. The otic capsule of crocodylians has a characteristic cochlear prominence that corresponds to the lateral route of the perilymphatic sac. Complex internal structures of the otoccipital (extracapsular buttress) additionally arrange the neurovascular structures of the periotic space of the cranium. Most of the braincase elements of crocodylians are excavated by the paratympanic pneumatic sinuses. The braincase in various extant crocodylians has an overall similar structure with some consistent variation between taxa. Several newly observed features of the braincase are present in Gavialis gangeticus and extant members of Crocodylidae to the exclusion of alligatorids: the reduced exposure of the prootic buttress on the floor of the temporal canal, the sagittal nuchal crest of the supraoccipital projecting posteriorly beyond the postoccipital processes and the reduced paratympanic pneumaticity. The most distinctive features of the crocodylian braincase (fixed quadrate and basipterygoid joint, consolidated occiput) evolved relatively rapidly at the base of Crocodylomorpha and accompanied the initial diversification of this clade during the Late Triassic and Early Jurassic. We hypothesize that profound rearrangements in the individual development of the braincases of basal crocodylomorphs underlie these rapid evolutionary modifications. These rearrangements are likely reflected in the embryonic development of extant crocodylians and include the involvement of neomorphic dermal anlagen in different portions of the developing chondrocranium, the extensive ossification of the palatoquadrate cartilage as a single expanded quadrate and the anteromedial inclination of the quadrate.