Seasonally Dry Tropical Forests (SDTFs) are situated in regions prone to significant water deficits. This study aimed to evaluate and quantify the dynamics and spatial patterns of vegetation and water bodies through the analysis of physical–hydrological indices for a remnant of FTSD between 2013 and 2021. Basal area, biomass, and tree number were monitored in 80 permanent plots located in two areas of an SDTF remnant with different usage histories. To assess vegetation and water resource conditions, geospatial parameters NDVI, NDWIveg, NDWI, and MNDWI were estimated for the period from 2013 to 2021. The observed patterns were evaluated by simple linear regression, principal component analysis (PCA), and principal component regression (PCR). Area 2 presented higher values of basal area, biomass, and number of trees. In area 1, there was an annual increase in basal area and biomass, even during drought years. The NDVI and NDWIveg indicated the vulnerability of vegetation to the effects of droughts, with higher values recorded in 2020. NDWI and MNDWI detected the water availability pattern in the study area. Physical–hydrological indices in the dynamics of tree vegetation in dry forests are influenced by various factors, including disturbances, soil characteristics, and precipitation patterns. However, their predictive capacity for basal area, biomass, and tree number is limited, highlighting the importance of future research incorporating seasonal variability and specific local conditions into their analyses.
Read full abstract