Glioblastoma (GBM), well known as grade 4 tumors due to its progressive malignant features such as vascular proliferation and necrosis, is the most aggressive form of primary brain tumor found in adults. Mutations and amplifications in the vascular endothelial growth factor receptor (VEGFR) contribute to almost 25% of GBM tumors. And thus, VEGFR has been declared the primary target in glioblastoma therapeutic strategies. However, many studies have been previously reported that include GBM as global therapeutics challenge, but they lack the molecular level insights that could help in understanding the biological function of a therapeutically important protein playing a major role in the disease and design the best strategies to develop the potential drugs. Therefore, to the best of our knowledge, the present study is the first time of kind, which involves multi-in silico approaches to predict the inhibition potential of withanolides from Withania coagulan against VEGFR. The study is actually based on determining the mode of action of five isolates: withanolide J, withaperuvin, 27-hydroxywithanolide I, coagule E, and coagule E, along with their respective binding energies. Molecular docking simulations revealed primarily four ligands, withanolide J (- 7.33kJ/mol), 27-withanolide (- 7.01kJ/mol), ajugine, withaperuvin (- 6.89kJ/mol), and ajugine E (- 6.39kJ/mol), to have significant binding potencies against the protein. Ligand binding was found to enhance the confirmational stability of the protein revealed through RMSD analysis, and RMSF assessment revealed the protein residues especially from 900-1000 surrounding the binding of the protein. Structural and dynamics of the protein via dynamics cross-correlation movement (DCCM) and principal component analysis (PCA) in both the unbound form and complexed with most potent ligand, withanolide J, reveal the ligand binding affecting the entire conformational integrity of the protein stabilized by hydrogen bonds and electrostatic attractions. Free energy of binding estimations by means of molecular mechanics Poisson-Boltzmann surface area (MMPBSA) method further revealed the withanolide J to have maximum binding potency of the all ligands. Withanolide J in final was also found to have suitable molecular characterizations to cross the blood-brain barrier (BBB +) and reasonable human intestinal absorption ability determined by ADMET profiling via admetSAR tools.
Read full abstract