N-glycosylation alters the properties of different enzymes in different ways. Rhizopus homothallicus was first described as an environmental isolate from desert soil in Guatemala. A new gene encoding glucanase RhGlu16B was identified in R. homothallicus. It had high specific activity (9673 U/mg) when barley glucan was used as asubstrate, and β-glucan is hemicellulose that isabundant in nature. RhGlu16B has only one N-glycosylation site in its Ala55-Gly64 loop. It was found that N-glycosylation increased its Tm value and catalytic efficiency by 5.1°C and 59%, respectively. Adding N-glycosylation to the same region of GH16 family glucanases TlGlu16A (from Talaromyces leycettanus) increased its thermostability and catalytic efficiency by 6.4°C and 38%, respectively. In a verification experiment using GH16 family glucanases BisGlu16B (from Bisporus) in which N-glycosylation was removed, N-glycosylation also appeared to promote thermostability and catalytic efficiency. N-glycosylation reduced the overall root mean square deviation of the enzyme structure, creating rigidity and increasing overall thermostability. This study provided a reference for the molecular modification of GH16 family glucanases and guided the utilization of β-glucan in hemicellulose.
Read full abstract