Wrist guards are widely used for preventing distal radius fracture during in-line skating and snowboard-related activities. However, more than half of people wearing wrist guards nonetheless sustain a fracture of the wrist in forward falls. Accordingly, this study evaluates the effects of three factors, namely the wrist guard design, the fall height and the arrest strategy, on the impact force during a forward fall onto a single outstretched hand. Fifteen physically healthy male participants volunteered for the biomechanical investigation. None of the participants had a previous history of upper extremity injuries or disorders. A 1000[Formula: see text]Hz AMTI force plate was used to measure the ground reaction force (GRF) in forward falls performed using a self-built release system onto a single hand. The GRF and impact time were analyzed in terms of three factors, namely (1) the wrist guard design, including bare hand (BH), conventional wrist guard (WG), wrist guard pad on palm (WG+), and WG+ with no lower splint (WG[Formula: see text]; (2) the elbow arrest strategy, including elbow extended and elbow flexed; and (3) the fall height, including 4[Formula: see text]cm and 8[Formula: see text]cm. The impact force and loading rate significantly increased with an increasing fall height. However, the elbow flexed strategy attenuated the GRF peak force and delayed the point of peak impact force. The GRF in the WG, WG+ and WG− conditions was significantly lower than that in the BH condition. Overall, a lower fall height, a wrist guard with a compliant pad (WG+ or WG[Formula: see text], and an elbow flexed strategy reduced the impact force, delayed the peak impact force, and reduced the loading rate in forward falls.
Read full abstract