BackgroundMonitoring forage in livestock operations is critical to sustainable rangeland management of soil and ecological processes that provide both livestock and wildlife habitat. Traditional ground-based sampling methods have been widely used and provide valuable information; however, they are time-consuming, labor-intensive, and limited in their ability to capture larger extents of the spatial and temporal dynamics of rangeland ecosystems. Drones provide a solution to collect data to larger extents than field-based methods and with higher-resolution than traditional remote sensing platforms. Our objectives were to (1) assess the accuracy of vegetation cover height in grasses using drones, (2) quantify the spatial distribution of vegetation cover height in grazed and non-grazed pastures during the dormant (fall–winter) and growing seasons (spring–summer), and (3) evaluate the spatial distribution of vegetation cover height as a proxy for northern bobwhite (Colinus virginianus) habitat in South Texas. We achieved this by very fine scale drone-derived imagery and using class level landscape metrics to assess vegetation cover height configuration.ResultsEstimated heights from drone imagery had a significant relationship with the field height measurements in September (r2 = 0.83; growing season) and February (r2 = 0.77; dormant season). Growing season pasture maintained residual landscape habitat configuration adequate for bobwhites throughout the fall and winter of 2022–2023 following grazing. Dormant season pasture had an increase in bare ground cover, and a shift from many large patches of tall herbaceous cover (40–120 cm) to few large patches of low herbaceous cover (5–30 cm) (p < 0.05).ConclusionsDrones provided high-resolution imagery that allowed us to assess the spatial and temporal changes of vertical herbaceous vegetation structure in a semi-arid rangeland subject to grazing. This study shows how drone imagery can be beneficial for wildlife conservation and management by providing insights into changes in fine-scale vegetation spatial and temporal heterogeneity from livestock grazing.