Techniques preventing icing and ice accumulation on surfaces are required to solve snow- and ice-induced accidents and disasters. Recently, hydrophilic polymers have attracted attention as a passive anti-icing method. This study examined the ice-adhesion properties of the hydrophilic poly[poly(ethylene glycol) methyl ether methacrylate] (PPEGMA) concentrated polymer brush (CPB). A custom-built apparatus was developed to obtain the ice-adhesion strength and visualize the dynamics of the ice-adhesion interface under tangential loading. The ice-adhesion interface for a PPEGMA-CPB-coated glass substrate was investigated by comparing it with the bare glass substrate. As a result, the CPB exhibited a low ice-adhesion strength of less than 100 kPa, the dependencies of which on the drive speed and temperature indicate a high-viscous liquid-like layer at the interface, even below the melting point of water, leading to the smooth onset of sliding due to its self-lubricity without any rupture events (including precursory events) observed for the bare glass.
Read full abstract