Chemical signals are frequently utilised by male mammals for intersexual communication and females are often attracted to male scent. However, the mechanism underlying female attraction has only been identified in a small number of mammalian species. Mammalian scents contain airborne volatiles, that are detected by receivers at a distance from the scent source, as well as non-volatile molecules, such as proteins, that require physical contact for detection. Lipocalin proteins, produced within the scent secretions of many terrestrial mammals, are thought to be particularly important in chemical signalling. Here, we explore if the male-specific protein, glareosin, expressed by adult male bank voles, Myodes glareolus, stimulates female attraction to male scent. We show that female bank voles are more attracted to male compared to female scent, supporting the results of previous studies. Increased investigation and attraction to male scent occurred to both airborne volatiles and non-volatile proteins when they were presented separately. However, we found no evidence that attraction to male scent was driven by glareosin. Our results differ from those previously described in house mice, where a single protein induces female attraction to male scent, suggesting the mechanism underlying female attraction to male scent differs between species.
Read full abstract