Owing to the unique characteristics of the hollow core fiber(HCF), more and more researchers pay attention to its application. Because the mode field is mainly limited to the core region of the fiber, which results in low non-linearity, ultra-low group velocity dispersion, low temperature sensitivity, and high material damage threshold. Based on the above, the HCF possesses some attractive nonlinear applications such as in transmission of high-power laser beams, sensing, ultra-wide band low-loss transmission, pulse compression and super-continuum generation. Besides, the HCFs can be further divided into the transmitting band-gap photonic crystal fiber(PBG-PCF) and the hollow-core anti-resonant fiber(HC-ARF). Compared with the PBG-PCF, the latter has wide light guiding characteristics caused by leaking modes. According to the research in the recent year, the HC-ARF has gradually approached to the performance of the PBG-PCF in its transmission loss, showing that it has potential applications in communications, sensing, aerospace, high-power laser transmission and other fields in the future. In addition, the HC-ARF with the special light-guiding properties has also become the important photonic device in the fields of fiber filters, mode conversion, etc. In this paper, a hollow-core anti-resonance fiber is studied and its light transmission performance in the spectral range of 500–1500 nm is verified. The optical loss measured at 980 nm wavelength is about 0.32 dB/m. It is found that a 980 nm multi-mode laser beam can be converted into a single-mode one after transmitting through the hollow core fiber we designed.
Read full abstract