This study aims to improve the performance of a pneumatic positioning system by designing a control system based on Fuzzy Fractional Order Proportional Integral Derivative (Fuzzy FOPID) controllers. The pneumatic system’s mathematical model was obtained using a system identification approach, and the Fuzzy FOPID controller was optimized using a PSO algorithm to achieve a balance between performance and robustness. The control system’s performance was compared to that of a Fuzzy PID controller through real-time experimental results, which showed that the former provided better rapidity, stability, and precision. The proposed control system was applied to a pneumatically actuated ball and beam (PABB) system, where a Fuzzy FOPID controller was used for the inner loop and another Fuzzy FOPID controller was used for the outer loop. The results demonstrated that the intelligent pneumatic actuator, when coupled with a Fuzzy FOPID controller, can accurately and robustly control the positioning of the ball and beam system.
Read full abstract