Decades of large-scale production of per- and polyfluoroalkyl substances (PFASs) have resulted in their ubiquitous presence in the environment worldwide. Similarly to other persistent and bioaccumulative organic contaminants, some PFASs, particularly the long-chain congeners, can be biomagnified via food webs, making top predators vulnerable to elevated PFAS exposure. In this study, we measured seven classes of PFASs in bald eagle (Haliaeetus leucocephalus) eggs for the first time. The eggs (n = 22) were collected from the North American Great Lakes in 2000–2012. The ranges of total concentrations of perfluoroalkyl sulfonic acids (∑PFSAs) and perfluoroalkyl carboxylic acids (∑PFCAs) were 30.5–1650 and 5.4–216 ng/g wet weight (ww), respectively. In addition to these traditional PFAS compounds, 6:2 fluorotelomer sulfonic acid (6:2 FTS; median: 15.7 ng/g ww), perfluoro-4-ethylcyclohexanesulfonic acid (PFECHS; 0.22 ng/g ww), and 8-chloro-perfluorooctanesulfonic acid (Cl-PFOS, detected in wildlife for the first time; 0.53 ng/g ww) were also frequently detected. Bald eagle eggs from breeding areas located less than 8 km from a Great Lake shoreline or tributary had significantly greater total PFAS concentrations (∑PFASs) than those from breeding areas located further than 8 km (p < 0.05). In these samples, ∑PFASs rivalled the total concentration of brominated flame retardants, and were significantly greater than those of several other organic contaminants, such as dechlorane-related compounds, organophosphate esters, and flame retardant metabolites.
Read full abstract