In view of the increasing environmental challenges and the growing demand for sustainable energy solutions, the optimization of microgrid systems with regard to economic efficiency and environmental compatibility is becoming ever more important. This paper presents the Microgrid Performance and Investment Rating (MPIR) index, a novel assessment framework developed to link economic and environmental objectives within microgrid configurations. The MPIR index evaluates microgrid configurations based on five critical dimensions: financial viability, sustainability, regional renewable integration readiness, energy demand, and community engagement, facilitating comprehensive and balanced decision making. The current cases focus on the area of Greece; however, the model can have a wider application. Developed using a two-target optimization model, this index integrates various energy sources—including photovoltaics, micro-wind turbines, and different types of batteries—with advanced energy management strategies to assess and improve microgrid performance. This paper presents case studies in which the MPIR index is applied to different microgrid scenarios. It demonstrates its effectiveness in identifying optimal configurations that reduce the carbon footprint while maximizing economic returns. The MPIR index provides a quantifiable, scalable tool for stakeholders, not only advancing the field of microgrid optimization, but also aligning with global sustainability goals and promoting the transition to a more resilient and sustainable energy future.