The process of winter bread wheat (WW) nutrient management in the Critical Cereal Window (CCW) has a decisive impact on yield component formation and, consequently, the grain yield (GY) and grain protein content (GPC). This hypothesis was verified in a single-factor field experiment carried out in the 2013/2014, 2014/2015, and 2015/2016 seasons. It consisted of seven nitrogen-fertilized variants: 0, 40, 80, 120, 160, 200, and 240 kg N ha−1. The mass of nutrients in ears was determined in the full flowering stage. The mass balance of nutrients (N, P, K, Mg, Ca, Fe, Mn, Zn, and Cu) was determined in leaves and stems. These sets of data were first used to calculate the soil nutrient uptake and then to predict the GY and GPC. Three nutrients, i.e., N, Ca, and Mg, were the main predictors of ear biomass. The set of ear nutrients significantly predicting GY and GE consisted of Ca, P, and Zn. Overall, this indirectly indicates a balanced N status for the ear. A positive nutrient balance in leaves, indicating their remobilization, was found for N, P, Fe, Zn, and Cu. Negative values, indicating a net nutrient accumulation in the non-ear organs of WW, were found for the remaining nutrients. The greatest impact on the GY and its components was observed for the balance of Mg and P but not N. The predictive worth of the nutrient balance for stems was much lower. The GPC, regardless of the type of indicator, depended solely on the N balance. Meanwhile, the main nutrient sources of N and Fe in ears were leaves and stems due to their uptake from the soil. For Cu, the primary source was soil, completed by its remobilization from leaves. For the remaining nutrients examined, the key source for the ear was soil, which was completed by remobilization from leaves and stems. Mg and Ca differed from other nutrients because their source for ears was exclusively soil. They were invested by WW in the ears and non-ear organs, mainly in the stems. The effective use of the yield potential of WW and other cereals requires insight into the nutritional status of the canopy at the beginning of the booting stage. This knowledge is necessary to develop an effective N management strategy and to correct and possibly apply fertilizers to improve both the yield and the GPC.
Read full abstract