The zeamines produced by Dickeya oryzae are potent polyamine antibiotics and phytotoxins that are essential for bacterial virulence. We recently showed that the RND efflux pump DesABC in D. oryzae confers partial resistance to zeamines. To fully elucidate the bacterial self-protection mechanisms, in this study we used transposon mutagenesis to identify the genes encoding proteins involved in zeamine resistance in D. oryzae EC1. This led to the identification of a seven-gene operon, arnEC1 , that encodes enzyme homologues associated with lipopolysaccharide modification. Deletion of the arnEC1 genes in strain EC1 compromised its zeamine resistance 8- to 16-fold. Further deletion of the des gene in the arnEC1 mutant background reduced zeamine resistance to a level similar to that of the zeamine-sensitive Escherichia coli DH5α. Intriguingly, the arnEC1 mutants showed varied bacterial virulence on rice, potato, and Chinese cabbage. Further analyses demonstrated that ArnBCATEC1 are involved in maintenance of the bacterial nonmucoid morphotype by repressing the expression of capsular polysaccharide genes and that ArnBEC1 is a bacterial virulence determinant, influencing transcriptional expression of over 650 genes and playing a key role in modulating bacterial motility and virulence. Taken together, these findings decipher a novel zeamine resistance mechanism in D. oryzae and document new roles of the Arn enzymes in modulation of bacterial physiology and virulence.
Read full abstract