ABSTRACT Chemical reduction of Cr(VI) can be a strategy to detoxify toxic metals in oxidized states, whereas reduction of Fe(III) could enhance the availability of Fe in the form of Fe(II) to boost plant growth. However, it creates another problem of chemical sludge disposal. Hence, microbial conversion of Cr(VI) to Cr(III) and Fe(III) to Fe(II) is preferred over the chemical method. Out of 11 bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dump sites, four isolates were selected for the reduction of Cr(VI) and Fe(III) and were identified as Micrococcus roseus NBRFT2 (MTCC 9018), Bacillus endophyticus NBRFT4 (MTCC 9021), Paenibacillus macerans NBRFT5 (MTCC 8912), and Bacillus pumilus NBRFT9 (MTCC 8913). These strains were individually tested for survival at different concentrations of Cr(VI) and Fe(III), pH, and temperature, and then, their ability for reduction of both metals was evaluated at optimum pH 8.0 and temperature 35°C. The results indicated that NBRFT5 was able to reduce the maximum amount, 99% Cr(VI) and 98% Fe(III). Other strains also reduced these metals to different levels, but less than NBRFT5. Hence, these strains may be used for decontamination of metal-contaminated sites, particularly with Cr(VI) and Fe(III) through the reduction process.
Read full abstract