The mastitis caused by Klebsiella pneumoniae (K. pneumoniae) is increasing in the dairy cows. To investigate the epidemic of K. pneumoniae of China, 131 strains were isolated from 495 clinical mastitis milk samples (26.5%) from 14 provinces in China. Among the isolates, K57 was the dominant serotype (45.0%) and 19 (14.5%) isolates were identified as hypervirulent K. pneumoniae (hvKP). The mrkA, entB, wabG and fimH genes were prevalent virulence genes while rmpA, magA, and ycf were not found in K. pneumoniae. Furthermore, K. pneumoniae had serious antibiotic resistance and multiple β-lactamase genes, including blaTEM, blaSHV, blaNDM, blaCTX-M, blaDHA, and blaKPC. Biofilm was an important factor in bacterial resistance and persistent infection, and 77.1% isolates could form biofilm. Although acylated homoserine lactone (AHL, a Gram-negative bacterial quorum sensing signal molecule) was not confirmed among the K. pneumoniae isolates, exogenous AHLs could reduce the biofilm formation ability of the K. pneumoniae strains. Three new ST types (ST6781, ST6782, and ST6783) were first identified in this study. The MLST phylogenetic tree showed the distribution of mastitis associated K. pneumoniae strains had no regular pattern, which confirmed high genomic diversity of mastitis associated K. pneumoniae. In conclusion, the high rate of isolation and serious antibiotic resistance of K. pneumonia were found in this study and indicated a potential threat to public health from the food chain.
Read full abstract