Abstract We consider a control problem for a mean-field coupled forward-backward stochastic differential equations, called also McKean–Vlasov equation (MF-FBSDE). For this type of equations, the coefficients depend not only on the state of the system, but also on its marginal distributions. They arise naturally in mean-field control problems and mean-field games. We consider the relaxed control problem where admissible controls are measure-valued processes. We prove the existence of a relaxed optimal control by using a suitable form of Skorokhod representation theorem and Jakubowski’s topology, on the space of càdlàg functions. We use martingale measure to define the relaxed state process. Our results extend to MF-FBSDEs those already known for forward and backward stochastic equations of Itô type.
Read full abstract