This paper presents a technique for semi-automatic 2D-to-3D stereo video conversion, which is known to provide user intervention in assigning foreground/background depths for key frames and then get depth maps for non-key frames via automatic depth propagation. Our algorithm treats foreground and background separately. For foregrounds, kernel pixels are identified and then used as the seeds for graph-cut segmentation for each non-key frame independently, resulting in results not limited by objects’ motion activity. For backgrounds, all video frames, after foregrounds being removed, are integrated into a common background sprite model (BSM) based on a relay-frame-based image registration algorithm. Users can then draw background depths for BSM in an integrated manner, thus reducing human efforts significantly. Experimental results show that our method is capable of retaining more faithful foreground depth boundaries (by 1.6–2.7 dB) and smoother background depths than prior works. This advantage is helpful for 3D display and 3D perception.