We investigate the disorder properties of two-dimensional hole gases in Ge/SiGe heterostructures grown on Ge wafers, using thick SiGe barriers to mitigate the influence of the semiconductor–dielectric interface. Across several heterostructure field effect transistors, we measure an average maximum mobility of (4.4±0.2)×106 cm2/Vs at a saturation density of (1.72±0.03)×1011 cm−2, corresponding to a long mean free path of (30±1)μm. The highest measured mobility is 4.68×106 cm2/Vs. We identify uniform background impurities and interface roughness as the dominant scattering mechanisms limiting mobility in a representative device, and we evaluate a percolation-induced critical density of (4.5±0.1)×109 cm−2. This low-disorder heterostructure, according to simulations, may support the electrostatic confinement of holes in gate-defined quantum dots.
Read full abstract