Banded Iron Formations (BIFs) interbedded with schists characterize the Mbarga prospect in the Ntem Complex at the northwest edge of the Congo Craton. This study presents new whole-rock geochemical, Sr-Nd, and zircon U-Pb isotopic data for the BIFs and schists to constrain the timing and geodynamic setting of the deposit. The abundances of SiO2 (52.81 to 79.14 wt%) and Na2O+K2O (4.24 to 8.54 wt%) in the schists indicate andesitic, dacitic, to rhyolitic protoliths. Trace element signatures, such as high Ba and depleted Nb-Ta concentrations, suggest a volcanic arc affinity. A well-defined U-Pb zircon age of 2890 ± 4 Ma implies a Mesoarchaean protolith age, while an imprecise Rb-Sr whole-rock age of ca. 2.65 Ga is consistent with known tectonothermal events (∼2.75 and 2.65 Ga) in the Ntem Complex. Initial εNd(2.89) values of + 0.8 to + 2.0 for the schists indicate an unevolved, mantle-like source for the protoliths. The BIFs show partial to extensive alterations of magnetite to hematite-martite and are of the Algoma type. They are characterized by high Fe2O3 (∼54.06 wt%) and SiO2 (∼45.40 wt%) but low Al2O3 (∼0.14 wt%), TiO2 (∼0.1 wt%), Zr (∼4.92 ppm), Th (∼0.11 ppm), and REE-Y contents. Rare earth patterns marked by LREE depletion, positive Eu anomalies (∼2), mild Ce depletion (Ce/Ce* 0.67 to 1.16), and super-chondritic Y/Ho ratios (∼34) suggest formation under anoxic to suboxic Archaean marine conditions, possibly involving mixing of Archaean seawater with minor (0.1–1 %) contributions from medium- to high-T hydrothermal fluids. Sparse 2951 ± 24 Ma zircons, presumably of detrital origin, establish a depositional link to the associated schists, redefining the age of BIF deposition within the Ntem Complex to ca. 2.95–2.89 Ga. However, whole-rock Sm-Nd isotope data for five BIF samples define a scattered array with an imprecise slope equivalent to an age near 1004 ± 78 Ma, which may reflect a previously unrecognized recrystallization event in the BIFs. The initial εNd of this array (−11.1 ± 2.0) suggests a crustal source. The mineralogical, geochemical, and isotopic datasets reconcile the Mbarga BIF prospect with arc magmatism in the Late Archaean, suggesting their formation in a back-arc basin setting.
Read full abstract