Metformin is a widely prescribed first line drug for the treatment of type 2 diabetes mellitus (DM). Studies have shown that the use of metformin is often associated with a decrease in vitamin B12 (B12) levels in patients with DM. Few studies have shown that this effect could be mitigated with calcium supplementation. In the present study, we quantified the effect of metformin, and metformin co-administered with calcium on B12 absorption using a novel stable isotope [13C] cyanocobalamin tracer. A pilot crossover study was conducted to estimate the bioavailability of B12 in healthy subjects, using [13C] cyanocobalamin as a tracer. In the study, [13C] cyanocobalamin was administered orally to the participants followed by hourly venous sampling to measure the concentration of the tracer and estimate bioavailability. This protocol was followed for three experiment days, each separated by a one month wash out period. As part of the study, all participants received the tracer alone for the control day (C), metformin 850mg along with the tracer for the metformin day (M) and metformin 850mg with calcium 500mg and the tracer for the metformin calcium day (MC). Seven participants completed all three experiment days. The mean B12 bioavailability (±SD, n=7) was 42.6±10.2% for the control day (C), 30.8±15.3% for the metformin day (M) and 46.4±8.6% for the metformin-calcium day (MC). Repeated measures ANOVA was done and the pairwise comparison showed a significant difference in the B12 bioavailability between control and metformin day (C vs M p=0.010), and between the metformin and metformin with calcium day (M vs MC p=0.003). B12 bioavailability reduced significantly from baseline (C) when metformin (M) was administered and this reduction was reversed when calcium was co-administered (MC) in healthy participants. In patients using metformin, calcium supplementation as a strategy to prevent B12 deficiency needs to be further studied.
Read full abstract