The muscle-CAT (M-CAT) promoter element is found on promoters of most muscle-specific cardiac genes, but its role in cardiac pathology is poorly understood. Here we studied whether the M-CAT element is involved in hypertrophic process activated by mechanical stretch, and identified the intracellular pathways mediating the response. When an in vitro stretch model of cultured neonatal rat cardiomyocytes and luciferase reporter construct driven by rat B-type natriuretic peptide (BNP) promoter were used, mutation of M-CAT element inhibited not only the basal reporter activity (88%), but also the stretch-activated BNP transcription (58%, p< 0.001). Stretch-induced BNP promoter activation was associated with an increase in transcriptional enhancer factor-1 (TEF-1) binding activity after 24h mechanical stretch (p< 0.05). Inhibition of mitogen-activated protein kinases ERK, JNK, or p38 attenuated stretch-induced BNP activation. Interestingly, as opposed to p38 and JNK, inhibition of ERK had no additional effect on transcriptional activity of BNP promoter harboring the M-CAT mutation, suggesting a pivotal role for ERK in regulating stretch-induced BNP transcription via M-CAT binding site. Finally, immunoprecipitation studies showed that mechanical stretch induced myocyte enhancer factor-2 (MEF-2) binding to TEF-1. These data suggest a central role for M-CAT element in regulation of mechanical stretch-induced hypertrophic response via ERK activation.
Read full abstract