Colorectal cancer is the third most common cancer in the world, and therapies with safety are in great need. In this study, the β-glucan isolated from Lentinus edodes was successfully fractionated into three fractions with different weight-average molecular weight (Mw) by ultrasonic degradation and used for the treatment of colorectal cancer. In our findings, the β-glucan was successfully degraded with the Mw decreased from 2.56 × 106 Da to 1.41 × 106 Da, exhibiting the triple helix structure without conformation disruption. The in vitro results indicate that β-glucan fractions inhibited colon cancer cell proliferation, induced colon cancer cell apoptosis, and reduced inflammation. The in vivo results based on Azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model demonstrate that the lower-molecular weight β-glucan fraction showed stronger anti-inflammatory and anti-colon cancer activities by reconstructing intestinal mucosal barrier, increasing short chain fatty acids (SCFAs) content, regulating metabolism of gut microbiota, and rebuilding the gut microbiota structure with the increased Bacteroides and the decreased Proteobacteria at the phylum level, as well as with the decreased Helicobacter and the increased Muribaculum at the genus level. These findings provide scientific basis for using the β-glucan to regulate gut microbiota as an alternative strategy in the clinical treatment of colon cancer.
Read full abstract