Chronic inflammation with progressive age, called inflammaging, contributes to the pathogenesis of cardiovascular diseases. Previously, we have shown increased vascular expression of the Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in aged mice and humans, presumably via mutual upregulation with the pro-inflammatory cytokine TNF-α. CEACAM1 is critical for aging-associated vascular alterations like endothelial dysfunction, fibrosis, oxidative stress, and sustained inflammation and can be regarded as a main contributor to vascular inflammaging. This study was conducted to elucidate the mechanisms underlying endothelial CEACAM1 upregulation by TNF-α in detail. Using wildtype (WT) and TNF-α knockout (Tnf-/-) mice, we confirmed that the aging-related upregulation of endothelial CEACAM1 critically depends on TNF-α. The underlying mechanisms were analyzed in an endothelial cell culture model. TNF-α time-dependently upregulated CEACAM1 invitro. In pharmacological experiments, we identified an early NF-κB- and a delayed β-catenin-mediated response. Involvement of β-catenin was further substantiated by siRNA-mediated knockdown of the β-catenin-targeted transcription factor TCF4. Both signaling pathways acted independent from each other. Elucidating the delayed response, co-immunoprecipitation analysis revealed release of β-catenin from adherens junctions by TNF-α. Finally, TNF-α activated Akt kinase by increasing its Ser473 phosphorylation. Consequently, Akt kinase facilitated β-catenin signaling by inhibiting its degradation via phosphorylation of GSK3β at Ser9 and by increased phosphorylation of β-catenin at Ser552 that augments its transcriptional activity. Taken together, our study provides novel mechanistic insights into the aging-related, inflammation-mediated endothelial upregulation of CEACAM1. Beyond the pathogenesis of cardiovascular diseases, these findings may be significant to all fields of inflammaging.
Read full abstract