ObjectiveThis study aims to explore the regulatory mechanisms of Wnt signaling in the invasion and recurrence of ameloblastoma (AM) to provide a new theoretical basis for its treatment.MethodsBulk RNA sequencing was employed to analyze samples from AM patients, and identify differentially expressed genes. Subsequently, bioinformatics methods such as Weighted Gene Co-Expression Network Analysis (WGCNA), DESeq2, and KEGG enrichment analysis were utilized to construct gene co-expression networks and identify pathways associated with invasion and recurrence. Furthermore, in vitro experiments, including Cell Counting Kit-8 (CCK-8), Wound healing assays, Western blotting, and qPCR were conducted to validate the effects of Wnt signaling on AM biological functions and the expression of related genes and proteins.ResultsBioinformatics analysis revealed significant activation of the Wnt signaling pathway during AM invasion and recurrence, and differential gene analysis identified specific gene expression patterns associated with the Wnt signaling pathway. In vitro experiments further demonstrated that the standard Wnt/β-catenin pathway activator, Laduviglusib significantly activated Wnt signaling, leading to a marked increase in the mRNA and protein expression levels of TCF7, β-catenin, WNT2B, and LEF1, thereby enhancing the proliferation and migration capabilities of AM cells.ConclusionThis study reveals the critical role of aberrant Wnt signaling activation in AM proliferation and migration, identifying it as a key driver of AM invasion and recurrence. The findings provide new insights into the mechanisms underlying AM invasion and recurrence, laying the foundation for developing novel therapeutic strategies.
Read full abstract