Hepatocellular carcinoma (HCC) is one of the most common as well as leading causes of mortality worldwide, and sorafenib is the first-line treatment in HCC patients. Unfortunately, drug resistance to sorafenib often develops. However, the underlying mechanism remains unclear. Here, we reveal the important role of macrophage extracellular traps (METs)-mediated crosstalk between macrophages and tumor cells in sorafenib resistance. METs in HCC tumor tissues were detected using immunofluorescence. The concentrations of MPO-DNA, elastase and cytokines were measured using ELISA. The mRNA expression levels of genes were confirmed by qRT-PCR. The siRNAs were conducted to knock ARHGDIG in Hepa1-6 and Hep3B cells. Western Blot assay was performed to determine protein expression of Rho GDP dissociation inhibitor gamma (ARHGDIG, or RHOGDI-3), PADI2, and PADI4. Cell viability and migration were evaluated by CCK-8 assay and transwell assay, respectively. Cell ferroptosis was assessed by measurement of Fe2+ concentration, flow cytometry assay of lipid ROS, and western blot assay of GPX4. The functions of sorafenib, DNase I, IL4 neutralization antibody and GPX4 in tumor growth were explored through in vivo experiments. Sorafenib induced MET formation in M2 macrophages rather than M1 macrophages derived from both human and mice. In Hepa1-6 HCC mice, METs clearance by DNase I improved response to sorafenib therapy, detected by tumor weight, tumor growth curve, tumor volume, and survival. By screening candidate cytokines that affect macrophage function, we found that sorafenib-promoting IL4 secretion by HCC cells plays a crucial role in sorafenib-induced MET formation. Understanding the critical role of IL4 in sorafenib-induced MET formation led us to find that IL4 neutralization significantly improved the efficiency of sorafenib in HCC models. Mechanistically, we discovered that sorafenib increased the expression of ARHGDIG in HCC cells, which led to the release of IL4. In M2 macrophages, IL4 triggered MET formation by elevating the mRNA and protein expression of peptidyl arginine deiminase 4 (PADI4) rather than PADI2. In HCC models, GSK484 inhibition of PADI4 could consistently weaken sorafenib resistance and improve sorafenib efficiency. Importantly, we discovered that METs contribute to sorafenib resistance by inhibiting the ferroptosis of HCC cells. Meanwhile, PADI4 inhibition or DNase I could reverse the sorafenib resistance caused by METs-inhibiting ferroptosis of HCC cells. Our study concludes that sorafenib-induced METs inhibit the ferroptosis of tumor cells, suggesting that targeting the IL4/PADI4/METs axis in HCC could reduce or prevent sorafenib resistance.
Read full abstract