To summarise pooled estimates of the efficacies of various myopia control interventions, as drawn from published meta-analyses. PubMed, SCOPUS and Web of Science were searched from inception to February 2024 for systematic reviews and meta-analyses reporting treatment effects of various myopia control strategies. The qualities of the included meta-analyses were assessed using the 16-item A MeaSurement Tool to Assess systematic Reviews (AMSTAR) 2. An intervention was defined as having a clinically significant effect if it resulted in a change in spherical equivalent refraction (SER) of ≥0.50 D/year or axial length (AL) change of ≤-0.18 mm/year. A total of 38 studies were identified. The overall respective changes in SER and AL, mean difference (95% CI) were high-concentration (≥0.5%) atropine 0.67 D (0.58-0.77) and -0.24 mm (-0.36 to -0.11); moderate-concentration (>0.05% to <0.5%) atropine 0.48 D (0.34-0.62) and -0.23 mm (-0.27 to -0.19); low-concentration (0.01%, 0.025%, 0.05%) atropine 0.33 D (0.23-0.43) and -0.14 mm (-0.19 to -0.09); orthokeratology -0.47 mm (-0.66 to -0.28); peripheral plus soft contact lenses 0.30 D (0.18-0.42) and -0.35 mm (-0.62 to -0.08); peripheral plus spectacles 0.77 D (0.40-1.14) and -0.43 mm (-0.78 to -0.08); multifocal spectacles 0.21 D (0.11-0.31); repeated low-level red light therapy 0.55 D (0.46-0.65) and -0.25 mm (-0.29 to -0.20); outdoor time 0.17 D (0.16-0.18) and -0.04 mm (-0.06 to -0.01). High and moderate concentrations of atropine, orthokeratology, peripheral plus spectacles and repeated low-level red light demonstrated clinically significant effects on slowing AL elongation, while high and moderate concentrations of atropine, peripheral plus spectacles and repeated low-level red light demonstrated clinically significant effects on slowing SER progression.
Read full abstract