ObjectiveThe objective of this study was to investigate the correlation between serum levels of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinases-1 (TIMP-1) levels and their ratios with the severity of white matter hyperintensities (WMHs) in patients with cerebral small vessel disease (CSVD). MethodsThis cross-sectional study was done on a prospective cohort of patients with CSVD. Qualitative and quantitative analyses of WMHs were performed using Fazekas grading and lesion prediction algorithm (LPA) methods. Biomarkers MMP-2, MMP-9, and TIMP-1 were measured to explore their correlation with the severity of WMHs. ResultsThe sample consisted of 144 patients with CSVD. There were 63 male and 81 female patients, with an average age of 67.604 ± 8.727 years. Among these, 58.33% presented with white matter hyperintensities at Fazekas grading level 1, with an average total template volume of WMHs of 4.305 mL. MMP-2 (P = 0.025), MMP-9 (P = 0.008), TIMP-1 (P = 0.026), and age (P = 0.007) were identified as independent correlates of WMHs based on Fazekas grading. Independent correlates of the total template volume of WMHs included MMP-2 (P = 0.023), TIMP-1 (P = 0.046), age (P = 0.047), systolic blood pressure (P = 0.047), and homocysteine (Hcy) (P = 0.014). In addition, age (P = 0.003; P < 0.001), interleukin-6 (IL-6) (P < 0.001; P = 0.044), Hcy (P < 0.001; P < 0.001), glycated hemoglobin (HbA1c) (P = 0.016; P = 0.043), and chronic kidney disease (P < 0.001; P < 0.001) were associated with both WMHs Fazekas grading and the total template volume of WMHs. ConclusionSerum levels of MMP-9, MMP-2, and TIMP-1 were independently associated with the Fazekas grading, while serum TIMP-1 and MMP-2 levels were independently related to the total template volume of WMHs. The association of TIMP-1 and MMP-2 with the severity of CSVD-related WMHs suggests their potential role as disease-related biomarkers. However, further research is required to uncover the specific mechanisms underlying these interactions.
Read full abstract