Challenges remain in the design and manufacture of acoustic devices with excellent broadband sound absorption performance. Herein, an efficient acoustic absorber with hierarchical pore structure and additional acoustic-electrical energy conversion mechanism is reported in which combined zirconia porous ceramics and P(VDF-TrFE) piezoelectric aerogels. Reticular cross-scale pore structure enables sound waves to propagate and dissipate effectively. The vibrations generated by piezoelectric aerogels under acoustic excitation further consume sound waves through converting acoustic energy into electrical energy based on the local piezoelectric and triboelectric effect, which improves the medium and low-frequency sound absorption capability. The average sound absorption coefficient of the prepared acoustic composites reaches 0.87 while the noise reduction coefficient is 0.54. Furthermore, the composites also possess low density, high compressive strength, good hydrophobicity and thermal insulation properties for applications. Therefore, this innovative strategy offers new design ideas for the next generation of high-performance acoustic materials with promising applications in transportation and industrial construction.
Read full abstract