As the number of highly destructive wildfires grows, it is increasingly important to understand the long-term changes that occur to fire-affected places. Integrating approaches from social and biophysical science, we document two forms of neighborhood change following the 2018 Camp Fire in the United States, examining the more than 17,000 residential structures within the burn footprint. We found that mobile or motor homes, lower-value residences, and absentee owner residences had a significantly higher probability of being destroyed, providing evidence that housing stock filtering facilitated socially stratified patterns of physical damage. While the relationship between building value and destruction probability could be explained by measures of building density and distance to nearby roads, building type remained an independent predictor of structure loss that we could not fully explain by adding environmental covariates to our models. Using a geospatial machine learning technique, we then identified buildings that had been reconstructed within the burn footprint 20 months after the fire. We found that reconstructed buildings were more likely to have been owner-occupied prior to the fire and had higher average pre-fire property value, suggesting an emerging pattern of cost-burden gentrification. Our findings illustrate the importance of examining the built environment as a driver of socially uneven disaster impacts. Wildfire mitigation strategies are needed for mobile and motor home residents, renters, low-income residents, and dense neighborhoods.