The use of agricultural residues in biogas plants is becoming increasingly important, as they represent an efficient and sustainable substrate alternative. Pelletizing straw can have positive effects on transportation, handling, and biogas production. In this study, different grain straw pellets from mobile and stationary pelleting plants in Germany as well as the corresponding untreated straw were characterized and investigated for their suitability for anaerobic digestion (AD). Therefore, tests on the biochemical methane potential (BMP) and the chemical–physical characterization of unpelletized straw and straw pellets were carried out. The characterization of the pellets and the straw revealed a high average total solid content of 91.8% for the industrially produced straw pellets and of 90.8% for the straw. The particle size distribution within the tested pellet samples varied greatly depending on the pelleting process and the pre-treatment of the straw. In addition, a high C/N ratio of 91:1 on average was determined for the straw pellets, whereas the average higher heating value (HHV) content of the pellets was 17.58 MJ kg−1. In the BMP tests, the methane production yields ranged from 260–319 normal liter (NL) CH4 kg−1 volatile solids (VS) for the straw pellets and between 262 and 289 NL CH4 kg−1 VS for the unpelletized straw. Overall, pelleting increases the methane yield on average from 274 to 286 NL CH4 kg−1 VS, which corresponds to an increase in methane yield of 4.3%. Based on the results, the feasibility of using straw pellets for AD could be confirmed, which can facilitate the possibility of increased biogas production from agricultural residues such as straw pellets and thus make the substrate supply more sustainable.
Read full abstract