In this study, Ni-P/ZrO2 nanocomposite coatings were deposited on St-37 steel substrates using the electroplating method with varying ZrO2 concentrations and current densities. To investigate the effects of electrolyte components and current density on coating properties, analyses were performed regarding microhardness, wear performance, and surface morphology. As a result of the analyses, it is observed that different bath concentrations and current densities significantly affect properties such as morphology, hardness, and wear performance. It is seen that the surface morphologies of the obtained coatings are generally smooth, but it is understood from the optical images that the surfaces of all nanocomposite coatings are rougher. While adding ZrO2 nanoparticles to the main matrix increases microhardness by approximately 40% compared to pure nickel, a similar but higher hardness value was obtained with the increase in current density. When examined in terms of wear performance, an average friction coefficient value of 3.15 times higher than that of pure nickel nanocomposite coatings was obtained.
Read full abstract