Outgassing from materials, whether through the ascent/descent stages of lunar vehicles, airlock depressurizing, rover or astronaut suit outgassing, may cause an effect of unwanted accumulation of volatiles at the surface and exosphere. This is especially important at (or proximal) to permanently shadowed regions (PSRs) at the lunar poles. Herein, we provide estimates of expected outgassing from various human-landed objects on the Moon, including backpacks, airlocks, rovers, landers, trash and mining operations. Astronaut suits produce some level of oxygen outgassing (Helou et al., 2022), which may transport and condense in these PSRs, even in micro- cold traps (Glavin et al., 2010).We estimate the outgassing from drill mining and trash-to-gas conversion assuming a specific technology is operating. These outgassing systems can create local, temporary atmospheres in the vicinity (∼100 km radius) of the sources. The atmosphere may be particularly high within meters of the source. To obtain column densities for these temporary atmospheres, we first bracket ranges for the gas number loss as a function of time. We then derive the maximum distance traveled and the time the released molecules remain in the exosphere for a single ballistic hop, assuming the molecules are ejected from the surface of the object at its surface temperature. In some cases, such as the astronaut backpack and the rover, the temperature is that of the source. Given this information, an average and peak local exospheric density and column density can be estimated. We find that backpacks, airlock releases, and the Starship lander can create relatively high-density local atmospheres, with local near-lander outgassing water densities exceeding 107/cm3. This local water exosphere is over 106 times greater than the LADEE-derived lower limit of the natural water exosphere at ∼3/cm3. Thus, the anthropogenic temporary water exosphere will likely dominate the environment near the lander, making an assessment of the natural exospheric water environment difficult.
Read full abstract