Understanding bacterial transport dynamics, particularly at the single-particle level, is crucial across diverse fields from environmental science to biomedical research. In recent times, the emerging impact electrochemistry method offers a transformative approach for detection of bacteria at the single-particle level. The method employs the principle of single-entity electrochemistry to scrutinize electrochemical processes during interaction with the working electrode. In this study, we utilized redox impact electrochemistry to detect bacteria and analyze their transport processes towards the working electrode. Stochastic detection using redox reactions at the ultramicroelectrode enabled the detection of individual bacteria, with collision resulting in a current spike signal due to charge transfer. Notably, the detection of bacteria was demonstrated at an exceptionally low concentration (100 CFU/mL), with recorded current spikes reaching approximately 8.1 nA. Analysis of integrated areas under these spikes unveiled a diverse distribution of charge transfer at the ultramicroelectrode during redox reactions, implying variations in bacterial sizes, collision positions on the electrode surface, and redox activity among bacteria. Remarkably, the average charge transfer per bacterium between E. coli and the electrode was found to be (244 ± 24) pC, underscoring the intrinsic redox activity of the bacteria, equivalent to (2.52 ± 0.25) × 10−15 mol. Additionally, our investigation explored the effects of cell transport mechanisms, including diffusion, migration, convection, and settlement on stochastic interactions of the bacteria at the ultramicroelectrode. Through the collision frequency calculations, we found that migration is the primary factor shaping bacterial transport, with gravitational cell settlement also exerting a significant influence.
Read full abstract