Multi-contrast magnetic resonance (MR) imaging is an advanced technology used in medical diagnosis, but the long acquisition process can lead to patient discomfort and limit its broader application. Shortening acquisition time by undersampling k-space data introduces noticeable aliasing artifacts. To address this, we propose a method that reconstructs multi-contrast MR images from zero-filled data by utilizing a fully-sampled auxiliary contrast MR image as a prior to learn an adjacency complementary graph. This graph is then combined with a residual hybrid attention network, forming the adjacency complementary graph assisted residual hybrid attention network (ACGRHA-Net) for multi-contrast MR image reconstruction. Specifically, the optimal structural similarity is represented by a graph learned from the fully sampled auxiliary image, where the node features and adjacency matrices are designed to precisely capture structural information among different contrast images. This structural similarity enables effective fusion with the target image, improving the detail reconstruction. Additionally, a residual hybrid attention module is designed in parallel with the graph convolution network, allowing it to effectively capture key features and adaptively emphasize these important features in target contrast MR images. This strategy prioritizes crucial information while preserving shallow features, thereby achieving comprehensive feature fusion at deeper levels to enhance multi-contrast MR image reconstruction. Extensive experiments on the different datasets, using various sampling patterns and accelerated factors demonstrate that the proposed method outperforms the current state-of-the-art reconstruction methods.
Read full abstract