The neuroregulatory center of intraocular pressure (IOP) is located in the hypothalamus. An efferent neural pathway exists between the hypothalamic nuclei and the autonomic nerve endings in the anterior chamber of the eye. This study was designed to investigate whether the paraventricular hypothalamic nucleus (PVH) regulates IOP as the other nuclei do. Optogenetic manipulation of PVH neurons was used in this study. Light stimulation was applied via an optical fiber embedded over the PVH to activate projection neurons after AAV2/9-CaMKIIα-hChR2-mCherry was injected into the right PVH of C57BL/6J mice. The same methods were used to inhibit projection neurons after AAV2/9-CaMKIIα-eNpHR3.0-mCherry was injected into the bilateral PVH of C57BL/6J mice. AAV2/9-EF1α-DIO-hChR2-mCherry was injected into the right PVH of Vglut2-Cre mice to elucidate the effect of glutamatergic neuron-specific activation. IOP was measured before and after light manipulation. Associated nuclei activation was clarified by c-Fos immunohistochemical staining. Only mice with accurate viral expression and fiber embedding were included in the statistical analysis. Activation of projection neurons in the right PVH induced significant bilateral IOP elevation (n = 11, P < 0.001); the ipsilateral IOP increased more noticeably (n = 11, P < 0.05); Bilateral inhibition of PVH projection neurons did not significantly influence IOP (n = 5, P > 0.05). Specific activation of glutamatergic neurons among PVH projection neurons also induced IOP elevation in both eyes (n = 5, P < 0.001). The dorsomedial hypothalamic nucleus, ventromedial hypothalamic nucleus, locus coeruleus and basolateral amygdaloid nucleus responded to light stimulation of PVH in AAV-ChR2 mice. The PVH may play a role in IOP upregulation via glutamatergic neurons.