This study investigated the integration of computer-aided design (CAD) and additive manufacturing (AM) in prototype production, particularly in the automotive industry. It explores how these technologies redefine prototyping practices, with a focus on design flexibility, material efficiency, and production speed. Adopting the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, this study encompasses a systematic review of 28 scholarly articles. It undertakes a comprehensive analysis to identify key themes, trends, and gaps in the existing research on CAD and AM integration in automotive prototyping. This study revealed the significant advantages of CAD and AM in prototype manufacturing, including improved design capabilities, efficient material usage, and the creation of complex geometries. It also addresses ongoing challenges, such as technology integration costs, scalability, and sustainability. Furthermore, this study foresees future developments by focusing on enhancing CAD and AM technologies to meet evolving market demands and optimize performance. This study makes a unique contribution to the literature by providing a detailed overview of the integration of CAD and AM in the context of automotive prototyping. This study incorporates valuable insights into the current practices and challenges and future prospects, potentially leading to more advanced, sustainable, and customer-oriented prototyping methods in the automotive sector.