IntroductionUse of stereotactic ablative radiotherapy (SABR) for central lung tumors can result in up to a 35% incidence of late pulmonary toxicity. We evaluated an automated scoring method to quantify post-SABR bronchial changes by using artificial intelligence (AI)-based airway segmentation. Materials and methodsCentral lung SABR patients treated at Amsterdam UMC (AUMC, internal reference dataset) and Peter MacCallum Cancer Centre (PMCC, external validation dataset) were identified. Patients were eligible if they had pre- and post-SABR CT scans with ≤ 1 mm resolution. The first step of the automated scoring method involved AI-based airway auto-segmentation using MEDPSeg, an end-to-end deep learning-based model. The Vascular Modeling Toolkit in 3D Slicer was then used to extract a centerline curve through the auto-segmented airway lumen, and cross-sectional measurements were computed along each bronchus for all CT scans. For AUMC patients, airway stenosis/occlusion was evaluated by both visual assessment and automated scoring. Only the automated method was applied to the PMCC dataset. ResultsStudy patients comprised 26 from AUMC, and 33 from PMCC. Visual scoring identified stenosis/occlusion in 8 AUMC patients (31 %), most frequently in the segmental bronchi. After airway auto-segmentation, minor manual edits were needed in 9 % of patients. Segmentation for a single scan averaged 83sec (range 73–136). Automated scoring nearly doubled detected airway stenosis/occlusion (n = 15, 58 %), and allowed for earlier detection in 5/8 patients who had also visually scored changes. Estimated rates were 48 % and 66 % at 1- and 2-years, respectively, for the internal dataset. The automated detection rate was 52 % in the external dataset, with 1- and 2-year risks of 56 % and 61 %, respectively. ConclusionAn AI-based automated scoring method allows for detection of more bronchial stenosis/occlusion after lung SABR, and at an earlier time-point. This tool can facilitate studies to determine early airway changes and establish more reliable airway tolerance doses.