Background. The scientific literature contents clearly not enough data at interaction of collagen materials with a living organism and about influence of multipotent stromal cells (MSC) on this process. There are controversies about the collagen degradation and the development of foreign body reactions. However, without account these results, it is impossible to estimate the timeframes for complete lysis of such materials, to progress effective methods for the prevention and treatment of developing complications. Objective. To study the features of the collagen-based material degradation after implantation with adsorbed autologous mesenchymal MSC of bone marrow origin (AMMSCBMO) in the experiment. Design and methods. In different times the condition of tissues around the implanted collagen membrane with adsorbed AMMSCBMO was studied by method of light microscopy. Results. The number of vessels and cellular elements in the collagen material implanted without AMMSCBMO increases to 3 weeks and remains at this level until the end of the observation. A distinctive features of the use of collagen membrane with adsorbed AMMSCBMO are increased vascularization and cellular infiltration of the material in the first 2 weeks after surgery. This effect further leads to a more rapid degradation of all implanted collagen, including its more dense parts, but does not prevent the formation of multinuclear macrophages with fused cytoplasm. Conclusion. As a result of more significant vascularization and cellular infiltration caused by AMMSCBMO adsorbed on the surface of the collagen material, to the 4th week the entire implant is full destroyed and absorbed, and dense fibrous connective tissue is formed in its place. For the implantation into the body, one should choose the most homogeneous collagen materials, without areas of different density, as slowly degrading fragments can cause the development of granulomatous inflammation and the failure of the implantation procedure.
Read full abstract