CD8+ T cells exhibit remarkable phenotypic diversity in inflammation and cancer. However, a comprehensive understanding of their clonal landscape and dynamics remains elusive. Here we introduce scAtlasVAE, a deep-learning-based model for the integration of large-scale single-cell RNA sequencing data and cross-atlas comparisons. scAtlasVAE has enabled us to construct an extensive human CD8+ T cell atlas, comprising 1,151,678 cells from 961 samples across 68 studies and 42 disease conditions, with paired T cell receptor information. Through incorporating information in T cell receptor clonal expansion and sharing, we have successfully established connections between distinct cell subtypes and shed light on their phenotypic and functional transitions. Notably, our approach characterizes three distinct exhausted T cell subtypes and reveals diverse transcriptome and clonal sharing patterns in autoimmune and immune-related adverse event inflammation. Furthermore, scAtlasVAE facilitates the automatic annotation of CD8+ T cell subtypes in query single-cell RNA sequencing datasets, enabling unbiased and scalable analyses. In conclusion, our work presents a comprehensive single-cell reference and computational framework for CD8+ T cell research.
Read full abstract