Bactrocera jarvisi is an endemic Australian fruit fly species (Diptera: Tephritidae). It occurs commonly across tropical and subtropical coastal Australia, from far-northern Western Australia, across the 'Top End' of the Northern Territory, and then down the Queensland east coast. Across this range, its distribution crosses several well documented biogeographic barriers. In order to better understand factors leading to the divergence of Australian fruit fly lineages, we carried out a population genetic study of B. jarvisi from across its range using genome-wide SNP analysis, utilising adult specimens gained from trapping and fruit rearing. Populations from the Northern Territory (NT) and Western Australia were genetically similar to each other, but divergent from the genetically uniform east-coast (= Queensland, QLD) population. Phylogenetic analysis demonstrated that the NT population derived from the QLD population. We infer a role for the Carpentaria Basin as a biogeographic barrier restricting east-west gene flow. The QLD populations were largely panmictic and recognised east-coast biogeographic barriers play no part in north-south population structuring. While the NT and QLD populations were genetically distinct, there was evidence for the historically recent translocation of flies from each region to the other. Flies reared from different host fruits collected in the same location showed no genetic divergence. While a role for the Carpentaria Basin as a barrier to gene flow for Australian fruit flies agrees with existing work on the related B. tryoni, the reason(s) for population panmixia for B. jarvisi (and B. tryoni) over the entire Queensland east coast, a linear north-south distance of >2000km, remains unknown.
Read full abstract