Identifying predictive biomarkers of patient outcomes from high-throughput microbiome data is of high interest, while existing computational methods do not satisfactorily account for complex survival endpoints, longitudinal samples, and taxa-specific sequencing biases. We present FLORAL, an open-source tool to perform scalable log-ratio lasso regression and microbial feature selection for continuous, binary, time-to-event, and competing risk outcomes, with compatibility for longitudinal microbiome data as time-dependent covariates. The proposed method adapts the augmented Lagrangian algorithm for a zero-sum constraint optimization problem while enabling a two-stage screening process for enhanced false-positive control. In extensive simulation and real-data analyses, FLORAL achieved consistently better false-positive control compared to other lasso-based approaches and better sensitivity over popular differential abundance testing methods for datasets with smaller sample sizes. In a survival analysis of allogeneic hematopoietic cell transplant recipients, FLORAL demonstrated considerable improvement in microbial feature selection by utilizing longitudinal microbiome data over solely using baseline microbiome data.
Read full abstract