AbstractA colloidal synthesis protocol is demonstrated for InAs@InP core@shell quantum dots (QDs) with a tunable InP shell thickness (ranging from 3 to 8 monolayers), utilizing tris(diethylamino)‐arsine and ‐phosphine. Structural analysis reveals that the InP shell preferentially grows onto the tetrahedral InAs cores along the <‐1‐1‐1> directions, forming tetrapodal‐shaped InAs@InP QDs. Growth of the InP shell causes a red shift in the absorption spectrum of the QDs. This is explained by considering that electrons are delocalized throughout the whole core@shell QDs, while holes preferentially leak along the <‐1‐1‐1> directions, as indicated by the density functional theory calculations. This means such heterostructures cannot be described as type‐I or quasi type‐II, contrary to earlier assumptions. The overlap of carrier wavefunctions throughout the entire InAs@InP QD structure results in no significant reduction of the Auger recombination rate, which remains as fast as in InAs QDs. However, the InP shell enhances photoluminescence (PL) efficiency (up to ≈13%) by passivating surface trap states of the InAs QDs (mainly located close to the top of the valence band). The overgrowth of a ZnSe shell endows the QDs with a high PL efficiency (≈55%) and good stability upon air exposure (≈80% PL intensity retention after 14 days).
Read full abstract