In the last years, the positive impact of sensorimotor rehabilitation training on spatial abilities has been taken into account, e.g., providing evidence that combined multimodal compared to unimodal feedback improves responsiveness to spatial stimuli. To date, it still remains unclear to which extent spatial learning is influenced by training conditions. Here we investigated the effects of active and passive audio-motor training on spatial perception in the auditory and proprioceptive domains on 36 healthy young adults. First, to investigate the role of voluntary movements on spatial perception, we compared the effects of active vs. passive multimodal training on auditory and proprioceptive spatial localization. Second, to investigate the effectiveness of unimodal training conditions on spatial perception, we compared the impact of only proprioceptive or only auditory sensory feedback on spatial localization. Finally, to understand whether the positive effects of multimodal and unimodal trainings generalize to the untrained part, both dominant and non-dominant arms were tested. Results indicate that passive multimodal training (guided movement) is more beneficial than active multimodal training (active exploration) and only in passive condition the improvement is generalized also on the untrained hand. Moreover, we found that combined audio-motor training provides the strongest benefit because it significantly affects both auditory and somatosensory localization, while the effect of a single feedback modality is limited to a single domain, indicating a cross-modal influence of the two domains. Therefore, the use of multimodal feedback is more efficient in improving spatial perception. These results indicate that combined sensorimotor signals are effective in recalibrating auditory and proprioceptive spatial perception and that the beneficial effect is mainly due to the combination of auditory and proprioceptive spatial cues.
Read full abstract