Sensorineural hearing loss is common with advancing age, but even with normal or near normal hearing in older persons, performance deficits are often seen for suprathreshold listening tasks such as understanding speech in background noise or localizing sound direction. This suggests there is also a more central source of the problem. Objectives of this study were to examine as a function of age (young adult to septuagenarian) performance on: 1) a spatial acuity task examining lateralization ability, and a spatial speech-in-noise (SSIN) recognition task, both measured in a hemi-anechoic sound field using a circular horizontal-plane loudspeaker array, and 2) a suprathreshold auditory temporal processing task and a spectro-temporal processing task, both measured under headphones. Further, we examined any correlations between the measures.DesignSubjects were 48 adults, aged 21 to 78, with either normal hearing or only a mild sensorineural hearing loss through 4000 Hz. The lateralization task measured minimum audible angle (MAA) for 500 and 4000 Hz narrowband noise (NBN) bursts in diffuse background noise for both an on-axis (subject facing 0°) and off-axis (facing 45°) listening condition at signal-to-noise ratios (SNRs) of -3, -6, -9, and -12 dB. For 42 of the subjects, SSIN testing was also completed for key word recognition in sentences in multi-talker babble noise; specifically, the separation between speech and noise loudspeakers was adaptively varied to determine the difference needed for 40% and 80% correct performance levels. Finally, auditory temporal processing ability was examined using the Temporal Fine Structure test (44 subjects), and the Spectro-Temporal Modulation test (46 subjects). Mean lateralization performances were poorer (larger MAAs) in older compared to younger subjects, particularly in the more adverse listening conditions (4000 Hz, off-axis, and poorer SNRs). Performance variability was notably higher for older subjects than for young adults. The 4000 Hz NBN bursts produced larger MAAs than did 500 Hz NBN bursts. The SSIN data also showed declining mean performance with age at both criterion levels, with greater variability again found for older subjects. Spearman rho analyses revealed some low to moderate, but significant correlation coefficients for age versus MAA and age versus SSIN results. A low but significant correlation was also observed between the most adverse MAA and SSIN conditions. Results from both the TFS and STM assessments showed decreased mean performance with aging, and revealed moderate, significant correlations, with the strongest relationship shown with the TFS test. Finally, of note, extended-high-frequency (EHF) hearing loss (measured between 9000 and 16,000 Hz) was found in older but not young subjects, and correlated with decreasing performance on several tasks. Particularly for more adverse listening conditions, age-related deficits were found on both of the spatial hearing tasks and in temporal and spectro-temporal processing abilities. It may be that deficits in temporal processing ability contribute to poorer spatial hearing performance in older subjects due to inaccurate coding of binaural/interaural timing information sent from the periphery to the brainstem. In addition, EHF hearing loss may be a coexisting factor in the reduced performance in older subjects.