Introduction and purpose: We present the needs, design, development, implementation, and accessibility of a crafted experimental PACS (ePACS) system to securely store images, ensuring efficiency and ease of use for AI processing, specifically tailored for research scenarios, including phantoms, animal and human studies and quality assurance (QA) exams. The ePACS system plays a crucial role in any medical imaging departments that handle non-care profile studies, such as protocol adjustments and dummy runs. By effectively segregating non-care profile studies from the healthcare assistance, the ePACS usefully prevents errors both in clinical practice and storage security. Methods and results: The developed ePACS system considers the best practices for management, maintenance, access, long-term storage and backups, regulatory audits, and economic aspects. Moreover, key aspects of the ePACS system include the design of data flows with a focus on incorporating data security and privacy, access control and levels based on user profiles, internal data management policies, standardized architecture, infrastructure and application monitorization and traceability, and periodic backup policies. A new tool called DicomStudiesQA has been developed to standardize the analysis of DICOM studies. The tool automatically identifies, extracts, and renames series using a consistent nomenclature. It also detects corrupted images and merges separated dynamic series that were initially split, allowing for streamlined post-processing. Discussion and conclusions: The developed ePACS system encompasses a successful implementation, both in hospital and research environments, showcasing its transformative nature and the challenging yet crucial transfer of knowledge to industry. This underscores the practicality and real-world applicability of our innovative approach, highlighting the significant impact it has on the field of experimental radiology.
Read full abstract