A new method for estimating the first and second derivatives of discrete audio signals intended to achieve higher computational precision in analyzing the performance and characteristics of digital audio systems is presented. The method could find numerous applications in modeling nonlinear audio circuit systems, e.g., for audio synthesis and creating audio effects, music recognition and classification, time-frequency analysis based on nonstationary audio signal decomposition, audio steganalysis and digital audio authentication or audio feature extraction methods. The proposed algorithm employs the ordinary 7 point-stencil central-difference formulas with improvements that minimize the round-off and truncation errors. This is achieved by treating the step size of numerical differentiation as a regularization parameter, which acts as a decision threshold in all calculations. This approach requires shifting discrete audio data by fractions of the initial sample rate, which was obtained by fractional delay FIR filters designed with modified 11-term cosine-sum windows for interpolation and shifting of audio signals. The maximum relative error in estimating first and second derivatives of discrete audio signals are respectively in order of 10-13\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$10^{-13}$$\\end{document} and 10-10\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$10^{-10}$$\\end{document} over the entire audio band, which is close to double-precision floating-point accuracy for the first and better than single-precision floating-point accuracy for the second derivative estimation. Numerical testing showed that this performance of the proposed method is not influenced by the type of signal being differentiated (either stationary or nonstationary), and provides better results than other known differentiation methods, in the audio band up to 21 kHz.
Read full abstract