Background: Limited knowledge is currently available on the effects of modified atmospheric packaging (MAP) on the metabolite profiles of cooked beef. The objective was to evaluate the impact of packaging on the cooked color and cooked metabolite profile of normal-pH (normal bright-red color) and atypical-dark-cutting beef (inherently slightly dark-colored) longissimus lumborum muscle. Methods: Normal-pH (pH 5.56) and atypical dark-cutting (pH 5.63) loins (n = 6) were procured from a commercial meat processor. Steaks were randomly assigned to one of three different packaging methods: vacuum packaging, carbon monoxide (CO-MAP), and high oxygen (HiOx-MAP). Following 5 d of retail display, steaks were cooked to 71 °C on a clamshell-style grill, and samples were collected for untargeted metabolites using gas-chromatography mass spectrometry. Results: Raw atypical dark-cutting steaks were less red (p < 0.05) than raw normal-pH steaks. However, there were no differences in internal cooked color between normal-pH and atypical dark-cutting steaks. Steaks packaged in HiOx-MAP steaks had a lower (p < 0.05) cooked redness than vacuum and CO-MAP steaks. A total of 129 metabolite features were identified in the study. Serine and tryptophan were over-abundant in cooked atypical dark-cutting beef compared to raw atypical samples. Citric acid levels were greater in HiOx-MAP packaged beef compared with VP both in normal and atypical dark-cutting beef after cooking, while no differentially abundant metabolites were shared between vacuum and CO-MAP steaks after cooking. Discussion: A slight increase in pH did not influence metabolite profiles in different packaging. However, there were packaging effects within normal and atypical dark-cutting beef. Conclusions: This study suggests that packaging conditions change metabolite profiles, which can influence cooked metabolites. Therefore, the metabolomics approach can be used to better understand cooked color defects such as premature browning.